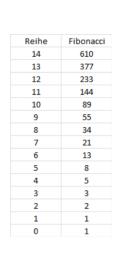
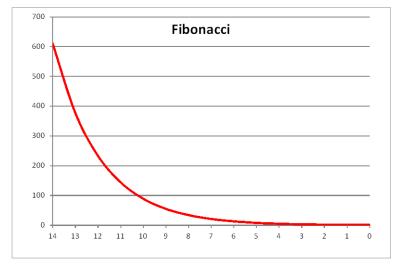
Die Fibonacci - Versuchung Inspirationen an Effekten

Werner Rudolf Cramer

DfwG – Jahrestagung 2018

Bönnigheim

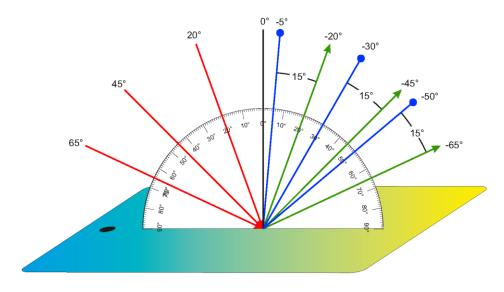

Fibonacci


- Leonardo da Pisa filius Bonacii/figlio di Bonaccio "Fibonacci"
- * 1170 in Pisa; † nach 1240 in Pisa
- Fibonacci-Zahlenfolge Die Summe zweier aufeinanderfolgende Zahlen ergibt die nächste Zahl:
 - 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
- Der Quotient zweier aufeinanderfolgenden Fibonacci-Zahlen tendiert gegen f ~ 1.618

.

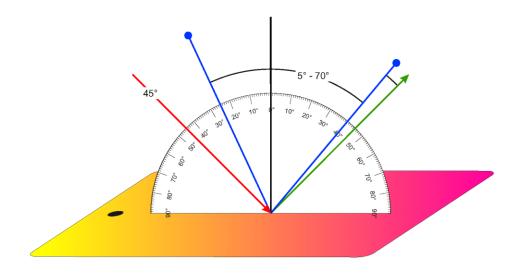
Fibonacci

- Bei der Fibonacci-Folge wachsen die Abstände aufeinanderfolgender Zahlen
- Die Folge steigt immer stärker (nichtlinear) an

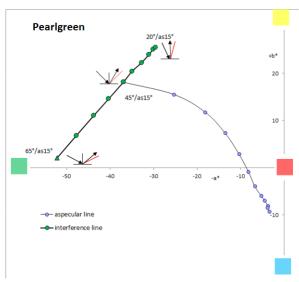

3

Interferenzpigmente

- Optische Eigenschaften werden über die Interferenz- und über die Aspecularlinie beschrieben
- Die Interferenzlinie ergibt sich durch die Messung bei variiertem Beleuchtungswinkel und konstantem Aspecularwinkel (as15°)
- Die Aspecularlinie wird durch Messungen bei konstanter Beleuchtung (45°) und variierten Aspecularwinkeln beschrieben


Messungen Interferenzlinie

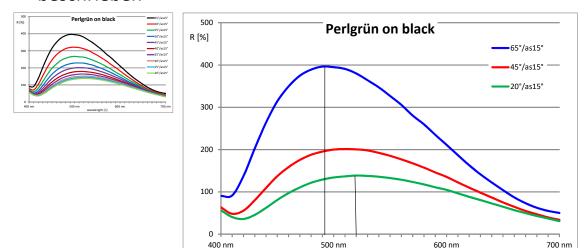
- Von der steilen Beleuchtung bei 20° erfolgt die Messung über die klassische Beleuchtung bei 45° bis 65°
- In allen Fällen bleibt der jeweilige Differenzwinkel zum Glanz (aspecular) gleich


Messung Aspecularlinie

- Die Beleuchtung ist konstant bei 45°
- Gemessen wird in 5°-Schritten von 5° bis 70° vom Glanzwinkel


Interferenzpigmente

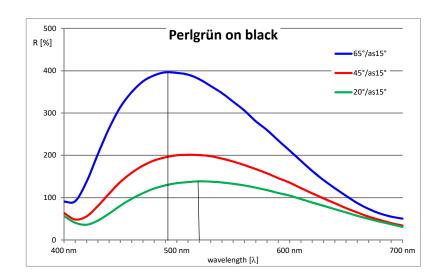
- Beispiel Perlgrün (aufgezogenes Muster auf Schwarz)
- Optische Eigenschaften werden über die Interferenzlinie (grüne Punkte) und über die Aspecular-Linie (graue Punkte) definiert
- Bei flacherer Beleuchtung drehen die Farbwerte gegen den Uhrzeigersinn


Interferenz - Linien

- Je flacher beleuchtet, desto stärker steigt die Reflexion
- Und die Differenzen zwischen aufeinanderfolgenden Reflexionskurven steigen auch, je flacher beleuchtet wird

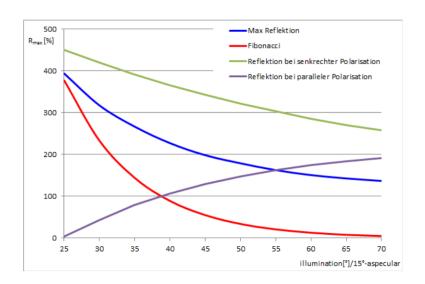
Verschiebung zum Kürzerwelligen

- Typisch für Interferenzpigmente ist die Verschiebung der Reflexionen zum kürzerwelligen Spektralbereich
- Diese Reaktion wird durch das Interferenzgesetz beschrieben


 $C:\Daten\experimente\fibonacci\[fibonacci.xlsx]\ 1266s$

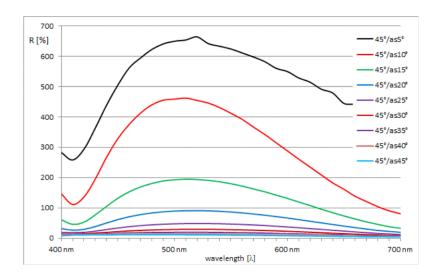
9

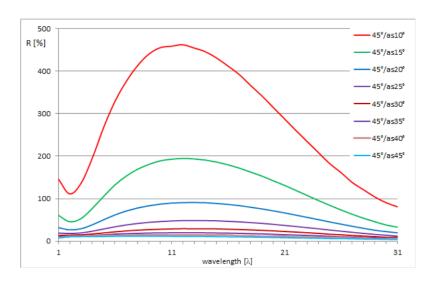
Maxima steigen


wavelength $[\lambda]$

- Die Abstände zwischen den Reflexionskurven (Maxima) werden größer, je flacher beleuchtet wird
- Diese Reaktion wird durch das Fresnelgesetz beschrieben

Erklärungen

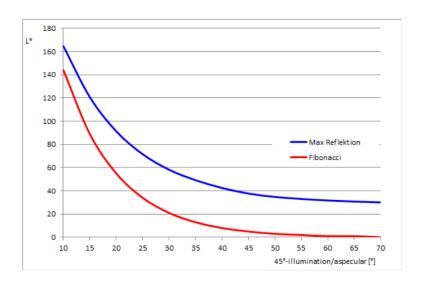

- Vergleich der Reflexionsmaxima mit angepaßter Fibonacci-Folge
- Vergleich mit Reflexion mit senkrechter und paralleler Polarisation nach Fresnel-Gesetz


11

Aspecular - Linien

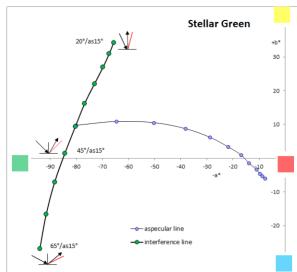
- Messungen vom Interferenzgrün in 5°-Schritten vom Glanz weg
- Messungen bei 5° vom Glanz liefert nicht-plausible Ergebnisse


- Nahe am Glanz sind die Reflexionen am größten
- Differenzen aufeinanderfolgender Reflexionskurven werden immer größer/kleiner

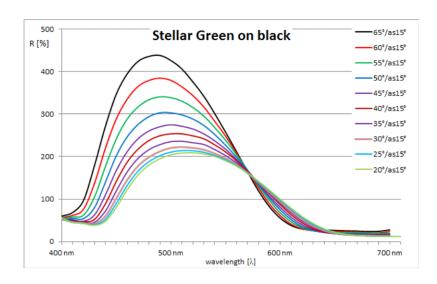

1

Aspecular - Linien

 Die Fibonacci-Folge ist der Kurve der maximalen Reflexionswerte ähnlich


 Die Fibonacci-Folge ist auch der Kurve der Helligkeitswerte L* ähnlich

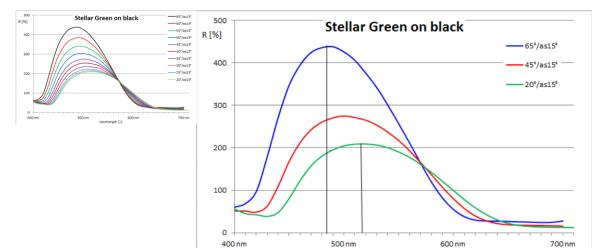
1


Beispiel Stellar Green on black

- Beispiel Stellar Green (aufgespritztes Muster auf Schwarz)
- Optische Eigenschaften werden über die Interferenzlinie (grüne Punkte) und über die Aspecular-Linie (graue Punkte) definiert
- Bei flacherer Beleuchtung drehen die Farbwerte gegen den Uhrzeigersinn

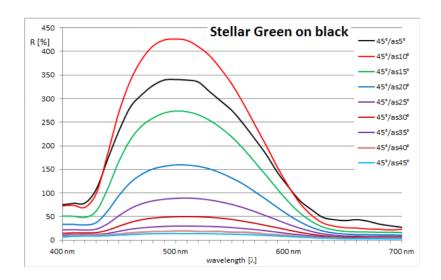
Interferenz - Linien

- Je flacher beleuchtet, desto stärker steigt die Reflexion
- Und die Differenzen zwischen aufeinanderfolgenden Reflexionskurven steigen auch, je flacher beleuchtet wird



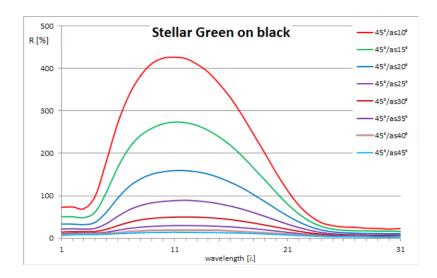
 $C:\ \ Daten\ \ experimente\ \ \ fibonacci\ \ \ [fibonacci.xlsx]x0943$

17

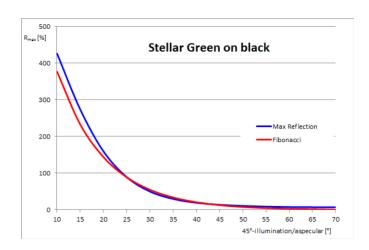

Verschiebung zum Kürzerwelligen

- Typisch für Interferenzpigmente ist die Verschiebung der Reflexionen zum kürzerwelligen Spektralbereich
- Diese Reaktion wird durch das Interferenzgesetz beschrieben

wavelength $[\lambda]$

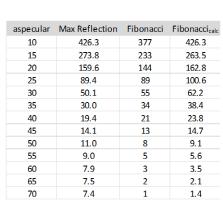

- Messungen vom Interferenzgrün in 5°-Schritten vom Glanz weg
- Messungen bei 5° vom Glanz liefert nicht-plausible Ergebnisse

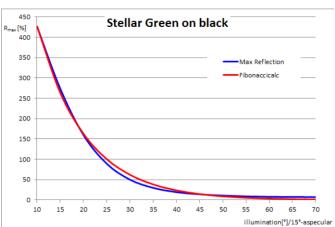
1


Aspecular - Linien

- · Nahe am Glanz sind die Reflexionen am größten
- Differenzen aufeinanderfolgender
 Reflexionskurven werden immer größer/kleiner

 Die Fibonacci-Folge ist der Kurve der maximalen Reflexionswerte ähnlich

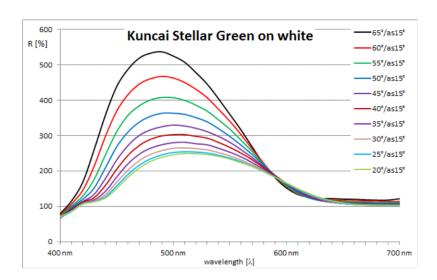

aspecular	Max Reflection	Fibonacci
10	426.3	377
15	273.8	233
20	159.6	144
25	89.4	89
30	50.1	55
35	30.0	34
40	19.4	21
45	14.1	13
50	11.0	8
55	9.0	5
60	7.9	3
65	7.5	2
70	7.4	1



21

Aspecular - Linien

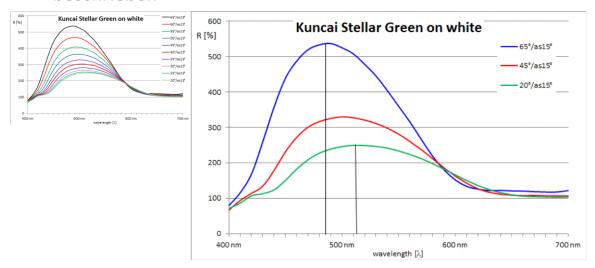

 Die Fibonacci-Folge ist der Kurve der maximalen Reflexionswerte ähnlich


Beispiel Stellar Green on white

- Beispiel Stellar Green (aufgespritztes Muster auf Schwarz)
- Optische Eigenschaften werden über die Interferenzlinie (grüne Punkte) und über die Aspecular-Linie (graue Punkte) definiert
- Bei flacherer Beleuchtung drehen die Farbwerte gegen den Uhrzeigersinn

Interferenz - Linien

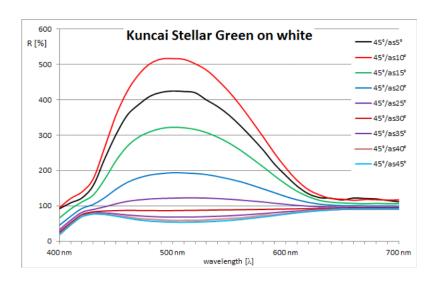
- Je flacher beleuchtet, desto stärker steigt die Reflexion
- Und die Differenzen zwischen aufeinanderfolgenden Reflexionskurven steigen auch, je flacher beleuchtet wird

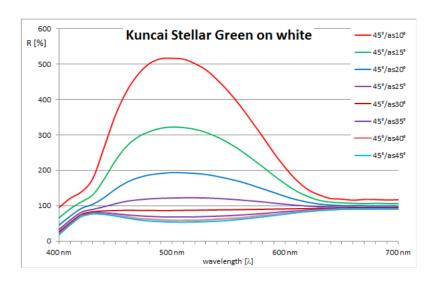


 $C:\Daten\experimente\fibonacci\fibonacci.xlsx]x0943$

24

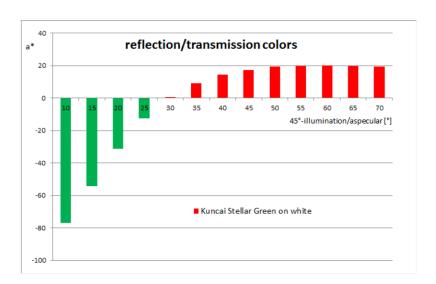
Verschiebung zum Kürzerwelligen


- Typisch für Interferenzpigmente ist die Verschiebung der Reflexionen zum kürzerwelligen Spektralbereich
- Diese Reaktion wird durch das Interferenzgesetz beschrieben

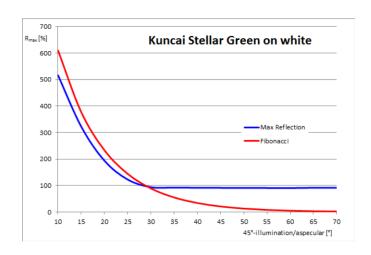

25

Aspecular - Linien

- Messungen vom Interferenzgrün in 5°-Schritten vom Glanz weg
- Messungen bei 5° vom Glanz liefert nicht-plausible Ergebnisse

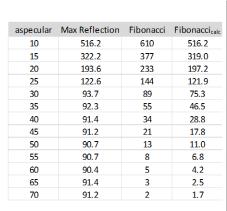

- Nahe am Glanz sind die Reflexionen am größten
- Differenzen aufeinanderfolgender Reflexionskurven werden immer größer/kleiner

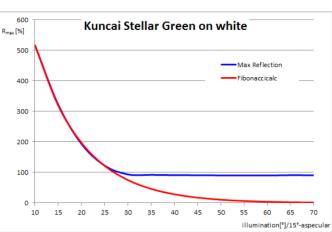
27


Transition

- · Nahe am Glanz sind die Reflexionen am größten
- Differenzen aufeinanderfolgender Reflexionskurven werden immer größer/kleiner

 Die Fibonacci-Folge ist der Kurve der maximalen Reflexionswerte ähnlich


aspecular	Max Reflection	Fibonacci
10	516.2	610
15	322.2	377
20	193.6	233
25	122.6	144
30	93.7	89
35	92.3	55
40	91.4	34
45	91.2	21
50	90.7	13
55	90.7	8
60	90.4	5
65	91.4	3
70	91.2	2



29

Aspecular - Linien

 Die Fibonacci-Folge ist der Kurve der maximalen Reflexionswerte ähnlich

Resumee

- Die Reihe der Reflexionsmaxima bei Interferenzpigmenten stimmt oft mit der Fibonacci-Folge überein
- Allerdings ist die Übereinstimmung von der Applikation abhängig, die zu nicht-idealen Beschichtungen führen kann
- Beide Folgen die von Fibonacci und die der Reflexionsmaxima – steigen nicht-linear an
- Es war eine schöne Idee, sich mit Fibonacci-Folge in Zusammenhang mit Interferenzpigmenten zu beschäftigen